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Abstract 

The present study aims to examine the relationship between the cortical midline 

structures (CMS), which have been regarded to be associated with selfhood, and moral decision 

making processes at the neural level. Traditional moral psychological studies have suggested the 

role of moral self as the moderator of moral cognition, so activity of moral self would present at 

the neural level. The present study examined the interaction between the CMS and other moral-

related regions by conducting psycho-physiological interaction analysis of functional images 

acquired while 16 subjects were solving moral dilemmas. Furthermore, we performed Granger 

causality analysis to demonstrate the direction of influences between activities in the regions in 

moral decision-making. We first demonstrate there are significant positive interactions between 

two central CMS seed regions—i.e., the medial prefrontal cortex (MPFC) and posterior cingulate 

cortex (PCC)—and brain regions associated with moral functioning including the cerebellum, 

brainstem, midbrain, dorsolateral prefrontal cortex, orbitofrontal cortex and anterior insula (AI); 

on the other hand, the posterior insula (PI) showed significant negative interaction with the seed 

regions. Second, several significant Granger causality was found from CMS to insula regions 

particularly under the moral-personal condition. Furthermore, significant dominant influence 

from the AI to PI was reported. Moral psychological implications of these findings are discussed. 

The present study demonstrated the significant interaction and influence between the CMS and 

morality-related regions while subject were solving moral dilemmas. Given that, activity in the 

CMS is significantly involved in human moral functioning. 

Keywords: Functional MRI, Psychophysiological interaction, Granger causality, Moral 

judgment, Cortical midline structures 
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1. Introduction 

Contemporary moral psychologists have studied the integrative model of human morality 

that can well explain the mechanism of moral motivation and actual moral behavior. Before the 

beginning of the 21st century, the mainstream paradigm in moral psychology was the 

Kohlbergian model, which attempted to explain the generation of moral behavioral motivation 

from a cognitive vantage point [1,2]. However, this model has been criticized by proponents of 

the role of moral emotion [3] and intuition [4,5]; those scholars have argued that the previous 

model was not able to successfully bridge the gap between moral reasoning and moral behavior 

[6]. Thus, to address this issue, contemporary moral psychologists have proposed an integrative 

model of human morality, which embraces the cognitive, affective and behavioral aspects. For 

instance, Neo-Kohlbergians, the contemporary moral psychologists who proposed integrative 

model of moral functioning (e.g., [7–9]), suggested the functional components of moral 

sensibility, moral motivation and moral personality on top of moral judgment [7]. In addition, 

character educators, who have sought to develop a new model of moral psychology that is 

suitable to educational practice, have underscored the integration of moral cognition, emotion 

and behavior [10,11].  

Then, what is the core or foundation of the integrative model? Which psychological 

construct does orchestrates activity of individual aspects of human morality and regulate the 

generation of motivational force for moral behavior? Several moral psychologists have suggested 

moral self as a candidate [12–14]. According to their theory, moral self is a psychological 

construct constituted by the perception of a person’s self as a moral person, which originates 

from moral identity [15]. Although a person might have developed sophisticated moral reasoning, 

he/she does not necessarily implement the result of his/her moral judgment into action if he/she 
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does not possess a strong sense of moral self because he/she does not prioritize moral values over 

other self-oriented values [13,16]. In fact, social psychological experiments have confirmed that 

the strength of moral self significantly moderated the relationship between the result of moral 

judgment [17,18], perceived socio-moral emotional valence [19] and actual moral behavioral 

outcome. The formation and development of moral self occurs through reflection upon and 

deliberation of beliefs, values and previous life experience, and continued commitment to moral 

behavior [20]. During adolescence and even beyond, a person’s moral self is being consolidated 

by integrating moral values into his/her self-identity [14,21]. 

Neuroimaging methods will facilitate this kind of research investigating the nature of 

human morality [22,23]. Neuroimaging studies have contributed significantly to our 

understanding of human morality because they enable us to investigate the internal processes of 

moral functions that underlie overt human behaviors, which have not been measured by non-

biological traditional methodologies [23,24]. These studies also aim to avoid the potential social 

and desirable biases of self-reporting methods that have been problematic in traditional moral 

psychological studies [22].  

Based on the previous studies, the present study aims to examine the relationship between 

the cortical midline structures (CMS), which have been regarded to be associated with selfhood, 

and moral decision making processes at the neural level. Previous fMRI studies in the field of 

cognitive and social neurosciences have examined the neural correlates of human morality. For 

instance, diverse dimensions of morality including, but not limited to, moral judgment [25,26], 

moral sensibility [27–29], moral competence [30] and moral elevation [31,32] have been 

demonstrated. Furthermore, several social neuroscientists have proposed the presence of the co-

activation of selfhood-related regions, particularly those in the cortical midline structures (CMS) 
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during the processing of moral tasks. The CMS include the dorsal- and ventral-medial prefrontal 

cortices (MPFC) and cingulate cortex, [33,34]. Recent meta-analyses [35,36] and fMRI studies 

[37,38] have also demonstrated that the processing of self-related and familiar contexts is 

associated with activity in the CMS regions, including the MPFC, PCC and anterior cingulate 

cortex (ACC). However, some studies have shown that in certain instances, activity in the 

posterior medial cortices (PMC) in the CMS was not stronger in “self” conditions compared to 

“others” conditions; more specifically, the region showed significantly stronger activity in the 

distant-others condition compared to the self condition in general [36,37]. Given these studies, it 

would be possible to say that the MPFC is commonly associated with selfhood-related processes, 

but the PMC is particularly associated with autobiographical memory processing rather than 

selfhood-related processes in general [37]. In studies related to morality, neuroimaging studies 

have also shown the relationship between the CMS regions and morality-related task conditions. 

In the previous fMRI studies, activity in the CMS regions was commonly associated with moral 

task conditions [39–41]. In addition, self-agency related to moral functioning shared neural 

substrates with the CMS [42]. Given these previous studies, we expect that there is significant 

relationship between the neural correlates of moral functioning and selfhood-related processes. 

The present study uses the general linear model (GLM) method to conduct the whole-brain tests; 

this method enables us to conduct “a diverse interrogation of functional imaging data using 

statistical parametric maps (p. 202)” and a diverse statistical analysis from a t-test to ANCOVA 

[43]. 

Given these studies in social neuroscience demonstrating the activation of the CMS 

regions in morality-related task conditions, we can expect a significant overlap between the brain 

circuitries associated with moral functioning and selfhood-related psychological processes. 
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Moreover, the nature of moral dilemmas would cause increased activity in such regions 

compared to non-moral dilemmas. Usually, moral dilemmas are regarded as problem sets that 

deal directly with “what we have to do” or “what we ought to do,” while non-moral dilemmas 

are in the realm of fact, instead of value [44]. Particularly, moral-personal dilemmas (e.g., 

Footbridge dilemma) are closely associated with the possible violation to concrete human lives; 

on the other hand, moral-impersonal dilemmas (e.g., Trolley dilemma) do not directly request 

subjects to make decisions affecting concrete human lives, but are similar to mathematical 

calculation problems [25,26,45]. Since moral dilemmas are more likely to urge us to deliberate 

upon our moral beliefs and values, they would induce stronger activity in the CMS regions 

compared to non-moral dilemmas.  

Furthermore, although traditional moral psychologists did not use neuroimaging methods, 

their social psychological [13,17,18,46] and developmental psychological studies [14,20] have 

shown the moderating and monitoring role of moral self in moral functioning. Thus, we may also 

expect that brain activity in the CMS associated with selfhood moderates or even influences that 

in other regions associated with moral functioning. However, the previous studies that have 

shown the overlap between those two brain circuitries did not utilize analytic methods that 

enable us to see the interaction between or causal relationship between brain regions, such as the 

psycho-physiological interaction (PPI) analysis [47] and Granger causality analysis [48]. The 

problem of reverse inference occurs if we try to interpret findings without the application of 

proper experimental and analysis methods [49,50]. Therefore, the present study aims to 

investigate such possible moderating and causal relationship between the CMS and other regions 

associated with moral functioning in morality-related task conditions, using the PPI analysis and 

GCA methods when subjects are making moral decisions to address moral problems.  
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The present study hypothesizes that first, the whole-brain tests will demonstrate that brain 

regions associated with emotional processes will show greater activity in the moral-personal 

condition compared to the moral-impersonal condition. This hypothesis originates from previous 

neuroimaging studies utilizing similar dilemma task conditions [25,26,51]. Moral-personal 

dilemmas are more likely to induce significant activity in regions associated with emotion (e.g., 

MPFC, orbitofrontal cortex (OFC), superior-temporal sulcus (STS), insula [42,51–55]) compared 

to moral-impersonal dilemmas, because the former strongly induce negative immediate 

emotional responses among subjects. On the other hand, previous studies have shown that in the 

moral-impersonal condition, regions associated with cognition, such as mental calculation (e.g., 

parietal lobule), will show significantly increased activity [25,26,51,56].  

Second, activity in the CMS regions significantly moderates activity in other brain 

regions associated with moral emotion and motivation (e.g., midbrain including the ventral 

tegmental area, ventral striatum, insula, OFC [57–61]) while subjects are solving moral problems. 

Given previous neuroimaging studies showing the overlap between the two regions, and 

traditional moral psychological studies suggesting the role of moral self, the present study will be 

able to find significant PPI between CMS and other regions associated with morality in the 

moral-task condition. Particularly, the present study focuses on the MPFC and posterior 

cingulate cortex (PPC) in the CMS. First, the MPFC is associated with self-referencing and self-

evaluation [62–64], which are fundamental to moral decision making processes. These selfhood-

related psychological processes enable people to consider and reflect upon their moral belief and 

value and to make a decision based on them [14,20,65]; moral decision making also would be 

moderated by these processes. Second, the present study also focuses on the PCC, because this 

region is associated with the processing of autobiographical memory, including self-referencing 
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[33,37,66–69]. Of course, although the PCC would not be strongly associated with selfhood-

related processes in general, because this region is associated with the autobiographical memory 

processing [36,37], the core self-related process involved in moral decision making, the present 

uses this region as a seed region. Because moral judgment cannot be independent from and is 

influenced by the deliberation upon previous lifelong experience [14,20,70], autobiographical 

memory processes inevitably would be involved in moral judgment, as the proponents of moral 

self and moral identity suggest [71,72]. Given these, the present study focuses on the MPFC and 

PPC, which are closely associated with selfhood-related psychological processes. 

Third, given the role of moral self proposed by traditional moral psychologists, the 

present study expects causal influence from activity in the CMS to that in other brain regions 

associated with moral emotion and motivation. The GCA will demonstrate significant causal 

influence from the MPFC and PPC to brain regions associated with moral emotion and 

motivation. More specifically, among all brain regions associated with morality, the present 

study concentrates on the insula regions, including both the anterior (AI) and posterior insula 

(AI). First, previous experiments have demonstrated that the PI is the core of the immediate 

processing of affective responses and the induction of subjective feelings [73,74], particularly 

negative emotions (e.g., pain and disgust) [73–77], that play fundamental roles in moral 

cognition [42,53]. Moreover, the AI is closely associated with the integration of cognition and 

emotion [78–82], conscious and interceptive awareness, monitoring of aroused emotional 

responses [28,83,84], and finally, the modulation of motivational force [60,61,85]. Given these 

previous works, the present study chooses the AI and PI as the regions of interest for the GCA. 
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2. Materials and Methods 

2.1 Subjects 

The present study recruited sixteen subjects at a college located in Northern California, 

using university mailing lists and Facebook. Only healthy right-handed subjects were included to 

control for any possible compounding effect originated from a history of physical or mental 

illness and handedness. Subjects’ physical and mental health condition (e.g., allergies, kidney 

problems, seizures, claustrophobia) was tested using a standard self-reporting questionnaire 

developed by The Richard M. Lucas Center for Imaging at Stanford University. Subjects’ age 

ranged from 21 to 34 (mean (±SD) age 28.59 ± 3.18 years). Because the present study recruited 

both male and female, and Korean and American subjects, we equalized the number of each 

gender and ethnicity group (4 male and 4 female subjects in each ethnicity group). All subjects 

were originally born in the country of their nationality. Further details regarding each subject’s 

demographics were presented in Table S1. We provided subjects with a written consent form 

initially approved by the Institutional Review Board. The subjects were debriefed and 

compensated for their participation ($60).  

 

2.2 Dilemma Task 

The present study utilized a set of moral dilemma questions initially developed by [25,26] 

and used by [51]. A total of sixty dilemma questions were included in the set. This moral 

dilemma set consisted of three different types of dilemmas: moral-personal, moral-impersonal 

and non-moral. First, moral-personal dilemmas were involved in serious bodily harm of a 

particular person or set of person, and they were designed to provoke severe negative affective 

responses from subjects [26]. On the other hand, moral-impersonal dilemmas also required 
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subjects to be involved in socio-moral value judgment, but they did not evoke any severe 

negative affective responses  [25]. Finally, non-moral dilemmas were used for the control 

condition. These non-moral dilemmas were purely arithmetic and did not require any value 

judgment [25]. The number of dilemmas in each category was 22, 18 and 20, respectively. The 

overall experimental paradigm is presented in Figure 1. 

<Place Figure 1 about here> 

Each dilemma trial presented an option to address a given problem. For instance, in the 

case of moral-personal dilemma, the subjects were asked whether or not it is morally appropriate 

to push a person on a foot bridge to stop a train and save five people. In both moral-personal and 

moral-impersonal categories, an “appropriate” answer is presumed to represent a utilitarian 

decision, while an answer “inappropriate” is presumed to represent a deontological decision 

[25,26]. Subject used a button box to answer dilemma questions. The subjects had 44 seconds to 

read a dilemma question and make a decision for each trial; this was followed by a 16-second 

fixation period. Each scan consisted of 5 trials and an inter-block interval period (a 16-second 

fixation period), and the whole scanning session was constituted with 12 scans (63 minutes 12 

seconds). The order of dilemma presentation was randomized to prevent adaptation to a specific 

type of dilemma. Each dilemma was presented in three separate slides. Subjects were able to 

move to the next page of each dilemma text on their own pace after they fully understood the 

meaning of the text. In fact, all subjects were able to make decisions for at least 99.8% of all 

presented dilemmas within the given time frame. In addition, there was not any significant 

difference in the mean response time between two nationality groups at p < .05. Given that there 

was not any statistically significant difference in the mean response rate and time between two 
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ethnicity groups, we assume that both Korean and American subjects equally well understood the 

presented dilemma materials. 

 

2.3 Image Acquisition 

Imaging data were obtained at 3T (GE Healthcare Signa 750) with an 8-channel birdcage 

head coil. Subjects’ head movements were minimized using foam paddings. First, we acquired 

high resolution T2-weighted fast spin echo structural images for alignment. A total of 31 oblique 

axial slices were obtained parallel to the AC-PC with 4-mm slice thickness, 1-mm inter-slice 

skip. Functional images were acquired with a spiral in and out sequence (TR = 2000ms, TE = 

30ms, flip angle = 90o) [86]. 31 thick axial slices were obtained with 4-mm slice thickness and 

resolution of 3.75 x 3.75 mm (FOV = 240mm, 64 x 64 matrix) covering the whole brain for a 

total of 157 TRs per scan. An automated high-order shimming procedure using spiral scans was 

applied to reduce B0 heterogeneity [87]. Finally, a high resolution volume image (132 slices, 1.2-

mm slice thickness) was acquired using 3D FSPGR sequence for T1 contrast (TR = 5.8ms, TE = 

1.8ms, flip angle = 11 o) for anatomical reference. Respiration and cardiac (pulse oximetry) 

responses were recorded using a respiratory belt and pulse-ox sensor attached to a finger. Image 

data used in the present study included functional images acquired by Han et al. (2014). 

 

2.4 Image Data Analysis 

The acquired images were analyzed using SPM 8 and MATLAB. First, we used the 

RETROICOR and RVHRCOR methods to minimize artifacts related to respiratory and cardiac 

activities [88,89]. Moreover, we conducted slice time correction, scan drift correction, motion 
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correction, co-registration, normalization (into SPM8’s standard MNI space (79 x 95 x 68, 2 x 2 

x 2mm3 voxels)), and spatial smoothing (Gaussian FWHM = 8mm).  

For the statistical analysis, regressors for the corresponding dilemma category blocks 

were modeled as a boxcar function convolved with the canonical Hemodynamic Response 

Function. For each trial, the boxcar function was defined by the duration between the onset of the 

slide requesting decision-making (about 8 seconds before each response) and the response. For 

the first order (single-subject level) analysis, we treated each voxel according to SPM 8’s GLM. 

In addition, we conducted a second-order (group-level) analysis to identify regions showing 

significantly different activity across dilemma conditions. For this analysis, a whole-brain t-test 

was utilized. In this analysis, statistical maps of voxelwise t-statistics were thresholded for both 

significance (p < .05 False Discovery Rate (FDR) corrected) and cluster size (k ≥ 25 voxels) to 

minimize false positive probability while maintaining statistical power. This cluster size was 

determined from the finding of a previous simulation [90]; given the simulation, a 25-voxel 

cluster is needed to realize a corrected threshold of p < .01 or p < .005 for multiple comparisons 

with an initial threshold p < .05 that is not family-wise error (FWE) corrected when a total of 

180,000 voxel-wise comparisons are conducted. Of course, the FDR-corrected threshold per se is 

more lenient than the FWE-corrected threshold and more susceptible to a false positive problem. 

However, when a cluster-based thresholding is applied, the FDR-applied threshold can become 

more stringent while maintaining the relatively lower possibility of type I error [90–92]. For 

further psychophysical interaction (PPI) and causality analyses, we focused on these two 

contrasts: moral-personal versus control and moral-impersonal versus control. Demographic 

variables (ethnicity, age, gender) were included in the statistical model as covariates.  
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In addition to the whole-brain voxelwise t-tests, PPI analysis was performed based on 

two seed regions within the CMS (4-mm-radius sphere)—i.e., the PCC and MPFC—to 

investigate which other regions showed significant interaction the CMS. The present study 

particularly focused on these two seed regions among various CMS regions, because of 

following regions: first, these regions showed significant activity under moral task conditions in 

the previous neuroimaging studies [39,40] as well as the present study; second, these regions are 

associated with self-evaluation [62,93] and particularly autobiographical memory processing 

[36,37] that constitute the basis of the moral belief system, moral identity, and finally moral self 

[33]. These seed regions were selected based on the peak voxel coordinate information as the 

result of the whole-brain voxelwise t-tests (described above) and the brain atlas obtained by 

previous functional connectivity studies [94,95]. The main purpose of PPI analysis is to 

investigate how regions possibly related to selfhood functions interact with other brain regions 

during the process of moral judgment. We utilized the PPI analysis method implemented in SPM 

8 [47]. This analysis examined how functional coupling or interaction between a certain seed 

region and other regions changed across different psychological factors—i.e., diverse task 

conditions—in this experiment. We conducted this PPI analysis for two functional contrasts: 

moral-personal versus control and moral-impersonal versus control. First, we extracted the 

deconvolved time series from a 4mm radius sphere around the defined coordinates of the two 

seed regions for each subject. Then, we examined the effect of the interaction term using the 

contrast [1 0 0] in SPM8; the first column “1” in the contrast vector means the interaction term in 

this analysis. The result represents the effect of interaction term between the time series of the 

seed regions and a block vector representing the tasks of our interest (moral-personal vs. control 

and moral-impersonal vs. control). The present study identified regions that showed significant 
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interaction with the seed regions for both positive and negative directions. These contrast images 

from the first-order analysis were used for the group-level analysis. We performed a series of 

second-order t-tests for each task contrast. Significant clusters showing PPI-related coupling with 

seed regions were identified with a threshold of p < .05 (FDR corrected) and minimal cluster size 

of 25 voxels.  

Finally, additional GCA focusing on a region displaying significant PPI results was 

conducted using The MVGC Multivariate Granger Causality Toolbox [96]. Particularly, we 

concentrated on the region showed mixed PPI results; we paid attention to a certain region if its 

subpart showed positive PPI while another subpart showed negative PPI. Because it is 

theoretically impossible to identify the direction of influence between two regions from the result 

of PPI analysis per se, we conducted this causality analysis. Furthermore, by investigating the 

direction of causality, we will be able to clarify how the mixed PPI results can appear in one 

region. Moreover, we considered whether candidate regions are closely associated with 

motivational processes inducing behavior to make a moral decision based on previous 

neuroimaging and moral psychological studies. The basic idea of this analysis is that when a time 

series significantly predicts another given the result of lagged correlational analysis, there is said 

to be a significant Granger causality between those two time series and the direction of causality 

is thereby identified [48]. Thus, we performed this analysis to illuminate the direction of 

causality between the two CMS seed regions and other target regions that showed mixed PPI 

results, particularly associated with moral emotion and motivation. First, we extracted a time 

series in the regions of interests for each trial; a total of 16 seconds (7-seconds before, 2 during, 

and 7 after the time point of response) were selected. Second, we entered the extracted time 

series to the MVGC tool; in this process, we controlled for the main effects of task conditions by 
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detrending linear element and removing the temporal mean [97]. Third, the MVGC tool 

calculated the Granger causality value for each pair between two particular regions, and the 

calculated values were entered to the second-order analysis. We tested whether the calculated 

causality value between two regions was significantly greater than zero using a t-test for each 

functional contrast [98]. However, there has been a methodological concern regarding the 

application of the GCA to neuroimaging studies; this method can be utilized only when we can 

assume that the Hemodynamic response functions (HRFs) remain unchanged across conditions 

[99]. Given that conditions have similar psychometric properties (i.e., similar task difficulty 

identified by the insignificant difference in the reaction time between conditions [100], identical 

structure of dilemma tasks in three conditions [25,26]), the present study assumed that the HRFs 

are not significantly different across conditions and the GCA was applicable. A Bonferroni FWE 

correction was applied to address the multiple-comparison problem; the corrected p-value 

applied for the tests was .05. For an exploratory purpose, we calculated correlational coefficients 

between the significant Granger causality scores and subjects’ behavioral responses—i.e., mean 

response time, ratio of utilitarian decisions. The corrected p-value applied for the correlational 

analyses was also .05. Furthermore, we tested whether there is significant dominant influence 

from one region to another region (x  y > y  x) at p < .05. 

 

3. Results 

3.1 Whole Brain Analyses 

We conducted whole-brain t-tests to examine whether the present experiment replicated 

well previous studies that used a similar dilemma set. Two contrasts (i.e., moral-personal versus 

control and moral-impersonal versus control) applied to the analyses. Furthermore, we also 
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compared brain activity between those two dilemma types. The results are summarized in Table 

S2 and displayed in Figure 2. These results demonstrated that the MPFC and ACC showed 

significantly great activity under the moral-personal condition, while (to a much weaker extent) 

the superior parietal lobule (SPL) and inferior parietal lobule (IPL) showed significantly stronger 

activity under the moral-impersonal condition compared to the counterpart. 

<Place Figure 2 about here> 

3.2 PPI Analyses 

Based on the results of the whole-brain t-tests for each dilemma condition (Figure 2), we 

extracted seed regions for both the PCC and MPFC that showed common activity under both 

conditions (see Figure 3). Local peak points that intersected with the anatomic atlas [95,101] as 

well as previous functional neuroimaging studies examining the activation foci of 

autobiographical memory processing [36,102,103] were then selected. As a result, we set the 

centroid of each 4 mm radius sphere-shaped seed region as follows:  the PCC (MNI [0, -54, 28]) 

and MPFC (MNI [0, 54, 12]). The radius of the spheres was 4mm. Two individual PPI analyses 

(moral-personal versus control and moral-impersonal versus control) were performed for each 

seed region (PCC and MPFC). The results are presented in Table 1-5 and Figure 4. 

<Place Figure 3 about here> 

<Place Figure 4 about here> 

3.2.1 Moral-personal versus Control Condition—PCC   

There were significant coupling between the seed region and the cerebellum, brainstem, 

midbrain, bilateral dorsolateral prefrontal cortex (DLFPC) and OFC under the contrast of moral-
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personal versus control conditions. In the case of the AI, only the left AI showed positive 

significant interaction. Interestingly, bilateral PI showed significant negative interaction with the 

PCC (See Table 1).  

<Place Table 1 about here> 

3.2.2 Moral-personal versus Control Condition—MPFC 

Similar to the case of the interaction between the PCC and other regions, the MPFC 

showed significant positive interactions with the cerebellum, brainstem, midbrain, bilateral 

DLPFC, OFC and AI. The bilateral PI also showed significant negative interaction with the seed 

region (See Table2).  

<Place Table 2 about here> 

3.2.3 Moral-impersonal versus Control Condition—PCC   

The overall result was also similar to the previous cases. The PCC showed significant 

coupling with the cerebellum, brainstem, midbrain, bilateral DLPFC, OFC and AI under this 

contrast. Although this seed region showed significant negative interaction with the PI, it was 

lateralized in the left hemisphere (See Table 3).  

<Place Table 3 about here> 

3.2.4 Moral-impersonal versus Control Condition—MPFC 

Although the overall result was similar to the previous cases, we identified notable 

differences in this case. The MPFC showed significant positive interaction with the cerebellum, 
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brainstem, midbrain, bilateral OFC and AI; however, it did not significantly interact with the 

DLPFC. The bilateral PI significantly negatively interacted with this seed region (See Table 4).  

<Place Table 4 about here> 

<Place Table 5 about here> 

3.3 Granger Causality Analyses 

We concentrated on a region that showed mixed interactions and is closely associated 

with core moral functions. Given the results of the PPI analyses, we chose the insula cortex as it 

showed positive as well as negative interactions. More specifically, the anterior part of the insula 

positively interacted with the CMS seed regions, while its posterior part showed negative 

interactions. Thus, we selected the local peak in each part that commonly showed significant 

interactions in all of four individual PPI analyses. As a result, we defined two centroids as 

follows: the left AI (MNI [-36, 18, 2]) and left PI (MNI [-44, 2, -10]). We extracted and analyzed 

the time series of BOLD signal change in a 4-mm sphere around each centroid. 

First, we were able to discover significant causal relations between seed and insula 

regions under both conditions. Under the moral-personal condition, there are MPFC  PI and 

AI, PCC  PI and AI, PI  PCC and AI, and AI  PI. In the case of moral-impersonal 

condition, these are MPFC  PI and AI, PCC  MPFC and AI, PI  AI, and AI  MPFC. 

Second, in the case of the dominant influence analysis, only AI  PI reported significant 

dominant influence under the moral-personal condition. Under the moral-impersonal condition, 

there was not any significant dominant influence reported by the present analysis. Granger 

causality values are presented in Tables S3 and S4. 
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<Place Figure 5 about here> 

Furthermore, there was a significant positive correlation between the mean score of the 

Granger causality from the MPFC to PI and mean response time under the moral-personal 

condition (r (14) = .57, p < .05, corrected). Other Granger causality scores did not show 

significant correlation with other behavioral responses—i.e., mean response time, ration of 

utilitarian decisions—under the moral-personal condition. There were not any other significant 

correlations found under the moral-impersonal condition. 

4. Discussion 

First, the present study compared the neural-level activity under the moral-personal, 

moral-impersonal and control conditions through whole-brain t-tests. The comparison showed 

that the MPFC was particularly activated under the moral-personal condition, while the parietal 

lobule regions were significantly activated under the moral-impersonal condition. These whole-

brain t-tests successfully replicated previous fMRI investigations that utilized similar moral 

dilemmas [25,26,51]. Second, we conducted PPI analyses by setting two seed regions in the 

CMS, i.e., the MPFC and PCC. The analyses reported that these seed regions significantly 

interacted with other brain regions associated with moral emotion and motivation (e.g., the OFC, 

insula, midbrain) under the moral task conditions. Finally, the present study performed Granger 

Causality analyses to examine the causal influence between activity in seed regions and other 

brain regions associated with moral emotion and motivation; particularly, we focused on the 

anterior and posterior insula. The results showed that the activity in the seed regions in the CMS 

significantly influenced on that in the insula regions under the moral-personal condition. In 

addition, the activity in the anterior insula significantly and dominantly influenced on that in the 

posterior insula under the both conditions. 
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4.1 Whole-brain T-tests 

First, in the case of the whole-brain t-tests, the present study successfully replicated the 

previous neuroimaging investigations using similar experimental paradigms. When we compared 

brain activity between two conditions, we were able to replicate previous experiments [25,26]. In 

the case of the moral-personal condition, the VMPFC and ACC were more activated compared 

to the moral-impersonal condition. First, the VMPFC is associated with processes of moral 

judgment associated with emotions [28,104–106]. In addition, the activity in the ACC is 

associated with conflict monitoring and solving [107–109] and complicated socio-moral 

dilemma solution [51]. In fact, the moral-personal condition was basically designed to induce 

strong negative and intuitive responses among subjects; thus, we expected to see strong activity 

in the VMPFC while subjects were solving such dilemmas. Furthermore, because the moral-

personal dilemmas were more difficult to solve compared to moral-impersonal dilemmas not 

related to concrete human life, as reflected in the significantly longer mean response time 

[25,51], the ACC would be more activated under this condition.  

On the other hand, the moral-impersonal dilemmas induced relatively stronger activity in 

the SPL and IPL comparing to the moral-personal condition. Previous neuroscientific studies 

have shown that these regions are associated with numerical and mathematical processing 

[56,110] and mathematical cognition [111,112]. Because the moral-impersonal dilemmas were 

more similar to simple arithmetical problems without the involvement of emotional elements 

than were moral-personal dilemmas [25], it is plausible that the activity in PL regions were 

stronger under this condition.  
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Given these results, we conclude that we were able to successfully demonstrate the 

general pattern of neural activity while subjects were solving moral philosophical dilemmas 

similar to those in the previous studies. Generally, subjects showed increased activity in the 

CMS, including the MPFC and PCC, in both the moral-personal and moral-impersonal 

conditions. The overlap between the activated regions in the present study and CMS regions 

would be interpreted by considering the nature of the dilemma task used in the present study. 

Basically, moral-personal and moral-impersonal dilemmas used in the present study required 

subjects to make decisions against presented dilemmatic situations. Previous neuroimaging 

studies that have demonstrated significant activity in the CMS while subjects were performing 

evaluations and selfhood, particularly autobiographical memory, and evaluation activity are 

inseparable from each other at the neural level [37,113,114]. Moreover, those evaluation tasks 

used in the previous studies usually entailed decision making aspects similar to the moral-

personal and moral-impersonal dilemma tasks used in the present study; in fact, these decision 

making tasks were inevitably related to value judgment and evaluation [115,116]. Given these, it 

would be difficult to disambiguate the neural circuitry of selfhood from that of moral decision 

making. This aspect would be revealed by the significant overlap between the regions showing 

significant activity in moral-task conditions in the present study and CMS regions.  

4.2 Interaction between CMS and other Regions 

The result of the PPI analysis indicated that there were significant interaction between the 

PCC and MPFC, which constitute the core of the CMS, and other brain regions associated with 

moral emotion, cognition and motivation. Particularly, positive interactions were discovered 

between both the PCC and MPFC, and cerebellum, midbrain, brainstem, AI, OFC and DLPFC. 

The overall finding was in line with a previous neuroimaging study examining the interaction 
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between the MPFC, PCC and other brain regions when subjects were evaluating moral 

sensibility issues associated with justice or care ethics [117].  

Previous studies have shown that cerebellum, midbrain and brainstem are associated with 

various affective and emotional processes, such as moral emotional processing [42,118], socio-

moral motivation [119] and attachment [120]. In addition to those regions basically associated 

with primary emotion [118], the AI is associated with the integration of primary emotion and 

cognition [83,121] and motivational processes [60,122]. The OFC has been regarded as the locus 

of motivational processes [123–126]. Finally, previous neuroimaging studies have proven that 

the DLPFC is closely associated with cognitive control under and inhibition of impulse various 

task conditions related to socio-moral issues [25,26,51,127,128]. However, significant negative 

interaction was found between the seed regions and PI. Unlike the case of the AI, which is 

associated with cognitive and interoceptive awareness of emotions [78–82] and emotional 

anticipation [128], the PI is specifically related to the primary and intuitive perception of 

negative emotions and somatosensory pain and disgust [73–77]. 

In the context of these previous studies, the present PPI results suggest that selfhood-

related processes associated with the seed regions and other general moral functions including 

moral emotion, cognition and motivation significantly interact with each other while solving 

presented moral dilemmas. In fact, this interaction would correspond to the previous moral 

psychological explanation regarding the mechanism of moral self and identity. According to 

previous moral psychological studies, moral self and moral identity have been regarded as 

psychological constructs playing a fundamental role in the generation of moral motivation and 

actual moral behavior [12,13]. These studies have proven that the psychological constructs 

interact with and moderate other moral functions including moral emotion and cognition, and 



24 

finally significantly contribute to the decision of behavioral direction and generation of 

motivation towards such direction [18,46]. For instance, a subject who showed strong integration 

between moral beliefs and selfhood was more likely to choose the morally appropriate 

behavioral option even under circumstances hindering moral behavior comparing to his/her 

counterparts [17,129]. Thus, our result that shows positive interaction between the regions 

supports the explanation of the role of moral self and moral identity proposed by previous moral 

psychological studies at the neural-level. 

The PI showed negative interaction with seed regions under both conditions, and the 

absolute value of the strength of the interaction was significantly greater under the moral-

personal condition (refer to Table 5).  In the case of the interaction with PI, the reason for the 

negative interaction can be understood by considering the nature of dilemma tasks. Previous 

studies have indicated that negative emotional responses, such as disgust and pain, are 

functionally mapped to the PI [73,75–77]. Moral dilemmas included in the dilemma set were 

designed basically to induce negative emotional responses, such as disgust and reluctance, at the 

first phase of the dilemma solving process; it was the initial intention of the inventors of the 

dilemma set and proved by their experiments [25,26]. However, because the degree of negative 

emotions possibly induced by dilemmas was much stronger under the moral-personal condition 

comparing to the moral-impersonal condition [25,26], the negative interaction between the seed 

regions and PI was also stronger under the moral-personal condition. Given the analysis and 

previous studies, the present study suggests that there is significant negative association between 

activity in selfhood-related processes associated with the seed regions and negative emotional 

responses associated with the PI during the process of moral dilemma solving. This negative 

interaction would be resulted from subjects’ effort to make a more deliberated moral-decision 



25 

while they were solving complicated moral-personal dilemmas. Although intuitive and 

immediate emotional responses strongly influence the initial phase of moral decision-making 

[4,130], the final outcome of the decision-making process is also significantly affective by the 

control of reasoning and deliberative processes [131,132], particularly in case of solving 

complicated and high-conflict moral dilemmas [133,134]. Thus, CMS regions associated with 

moral self, which would be the moderator of moral deliberation and the monitor of moral 

emotion, showed negative interaction with the PI, which possibly represents the conscious 

control over intuitive and negative emotional responses as a part of efforts to make a more 

deliberated moral decision. Furthermore, this negative interaction was significantly stronger 

under the moral-personal condition (see Table 5), because the nature of the condition is basically 

more complicated and conflicting, so it would more strongly induce the involvement of 

deliberative and monitoring processes. However, because the PPI method cannot determine the 

direction of influence between regions, we cannot determine whether selfhood-related processes 

down-regulate control negative affective responses or vice versa. However the Granger causality 

results clarified the information flow. 

4.3 Granger Causality between CMS and Insula Regions 

We were able to discover several significant causal relations between seed and insula 

regions from the findings of Granger causality analysis particularly under the moral-personal 

condition that are coherent with our moral psychological vantage point. The findings reported 

that CMS regions significantly influenced insula regions. The CMS regions particularly the 

MPFC and PCC selected in the present study and constitute the cortical midline structures, which 

significantly influenced insula regions, are regarded to be the loci of selfhood, or at least the 

autobiographical processing that is deemed to be the core selfhood-related process associated 
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with moral functioning in case of the PCC [36,37], at the neural level (Damasio, 2010; Northoff 

and Bermpohl, 2004). Previous neuropsychological studies have demonstrated that the activity in 

the MPFC region as a part of the CMS are closely associated with self-evaluation of a belief 

system and morality [29,42,62,93,135,136]; even socio-moral emotions are also modulated by 

this self-evaluative mechanism [137]. Furthermore, the PCC region is associated with other 

important self-related processes, particularly self-referencing and autobiographical memory 

processing [33,66–69]; although some recent studies have shown that this region might not be 

associated with selfhood-related processes in general, it is closely associated with the 

autobiographical memory processing [36,37]. The influenced regions, the PI and AI, also play 

important roles in moral decision-making. They mainly deal with the processing of moral 

emotion and the generation for motivation for moral decision-making. First, activity in the PI 

region is basically associated with primary and somatosensory affective responses, which seem 

to occur intuitively and immediately after presented task stimuli. Previous studies have proposed 

that the PI is related to the initial affective responses to external stimuli and induces subjective 

feeling [73,74]. Moreover, activity in the AI is associated with secondary, conscious and 

interoceptive awareness of aroused affective responses [78–82] and their modulation in 

motivational processes [60,61,85]. This region is associated with post-processing of aroused 

initial affective responses to relay the affective information to cognitive processes, and finally 

produce behavioral motivation based on judgment [28,83,84]. This emotional and motivational 

processes are also associated with socio-moral processes (e.g., empathy), that is, the main 

interest of the present study [138]. Particularly, the left AI, which was the ROI of this analysis in 

the present study, is associated with these conscious emotional and motivational processes, 
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especially positive emotional and motivational processes, while the RI is more closely related to 

negative arousing to the body (e.g., pain) [79].  

Thus, we discovered at least partially the significant engagement of selfhood-related 

processes in the processing of primary moral emotion and generation of motivation for moral-

decision. More specifically, autobiographical memory processing and self-evaluation based on a 

belief system influenced the processing and integration of primary emotion and motivation 

generation in moral decision-making. In fact, this neural-level evidence is consistent with the 

point of view of scholars underscoring the role of moral self and identity in human morality. 

They have proposed that the presence of moral self and moral identity based on personal morals 

and beliefs plays a regulatory rule in moral cognition, moral emotion and finally the generation 

of behavioral motivation [12,13,18,139]. Furthermore, although the intuitive mechanism would 

be initially activated, actual motivational and behavioral outcome is not directly produced by that 

mechanism, but moral self, which is based on autobiographical memory formulated by long-term 

experience, commitment and reflection [14,140], significantly influences that outcome [20,65]. 

Initially aroused moral emotions are also regulated by the moral self-related factors during the 

course of moral decision-making and moral behavior. As revealed by the causal relations in the 

present study, thus, moral emotion and motivational processes would be significantly influenced 

by processes of selfhood and moral identity, such as referencing of autobiographical memory as 

a part of moral identity and self-evaluation of moral beliefs and value system, during moral 

judgment as proposed by moral psychologists. However, because there were not any significant 

dominant influences from CMS to insula regions, we should be cautious while interpreting the 

findings. We should be aware of the possible presence of influences from insula regions to CMS 

regions, although these influences were not significant in our model. Future experiments with 
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more subjects or a meta-analysis based on accumulated data-set would possibly improve the 

statistical power of causality analysis and detect more dominant influences, which have not been 

proved to be significant in the present study due to the type II error issue but would really exist. 

We should take into account the fact that the significant Granger causality from CMS to 

insula regions appeared only under the moral-personal condition and that no such significant 

causal relation was found under the moral-impersonal condition. This discrepancy can be well 

explained by the nature of each task condition. In the case of the moral-personal condition, 

dilemma tasks strongly evoke subjects’ gut-level responses, because they demonstrate concrete 

and vivid scenes, which are involved in potentially severe physical and mental harm to people in 

the dilemmatic situations [25,26]. As a result, psychological processes dealing with intuitive 

emotional responses would be intensively activated under this condition [141], so the regulatory 

activity associated with the self-related regions would also be intensified while processing 

emotional responses and making a final moral decision under this task condition. According to 

moral psychologists, moral self is supposed to monitor and moderate moral emotion and 

cognition, and finally significantly contribute to the generation of motivation for moral decision-

making and behavior [12,13,17,46,142]. Thus, the significant influence from CMS regions, 

which are supposed to be associated with moral self in the present study, to insula regions 

dealing with moral emotion and motivation possibly under the moral-personal condition 

represent the regulation of emotional and motivational processes by moral self in moral decision-

making in complicated and conflicting situations at the neural level. Furthermore, because the 

value conflicts embedded in this type of dilemmas are basically much fiercer compared to those 

embedded in moral-impersonal dilemmas, they are more likely to request subjects to refer to and 

reflect upon their moral beliefs and value system based on their autobiographical self while 
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solving dilemmas [71,72], and it would be indicated by the increased activity in CMS regions as 

demonstrated by the whole-brain comparison [33–35]. This process was also be indicated by the 

increased interaction between CMS and other morality-related regions under the moral-personal 

condition in the PPI analysis. Thus, subjects were more likely to refer to and reflect on their 

moral beliefs and value system when they were solving intensively conflicting moral-personal 

dilemmas, and the reflection and reference possibly regulated the processes of moral emotion 

and motivation as indicated by the significant Granger causality from CMS to insula regions 

under the moral-personal condition. On the other hand, moral-impersonal dilemmas are more 

similar to value-neutral mathematical or working memory tasks compared to the moral-personal 

dilemmas [25], therefore the involvement of self-related processes would become weaker. Under 

this condition, subjects do not have to consider their moral beliefs and self-identity to solve 

problems; instead, they are only requested to use their general cognitive skills, which are 

independent from selfhood-related processes. As a result, the differences between moral-personal 

and moral-impersonal conditions should result in different Granger causality in these conditions. 

Meanwhile, we discovered the dominant significant influence from the AI to PI. Given 

the previous studies that have proposed that the PI is associate with primary intuitive emotional 

arousal, particularly negative emotion [73,74], we may conclude that the initial arousal of 

negative emotional responses against moral dilemmas are regulated by activity in the AI. We 

may apply this discussion to the consideration of the importance of moral deliberation and 

cognition in moral decision-making. Some psychologists argue that the mechanism of intuitive 

and affective processes occurring at the earliest stage of moral judgment significantly determine 

further moral judgment [5]. For instance, particularly, negative emotions, such as disgusting, are 

significantly in the process of further value evaluation, and finally, motivation for a certain 
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behavioral outcome [4,130].  However, the presence of the dominant influence from the AI to PI 

can support another moral psychological vantage point that underscores the role of conscious 

regulation over intuitive emotional responses in moral decision-making particularly while 

solving moral problems [70,142], such as moral dilemmas in the present study, which is coherent 

with the view point of the proponents of moral self and identity [12,143].   

In addition, the significant correlation between the causality score from the MPFC to PI 

and mean response time under the moral-personal condition is also interesting. We interpret the 

interaction of MPFC on PI to represent the influence of self-evaluative processes [62,63] on 

intuitive and emotional responses [73,74,77] to moral dilemmas. Moreover, this causal direction 

suggests deliberative processes based on the autobiographic self and moral belief system exert 

control over affective processes while solving moral dilemmas. In fact, a previous study 

demonstrated that activity in the PI is negatively correlated with mean response time under the 

moral-personal condition [51]. Therefore, increased activity in the PI, which is related to the 

stronger arousal of intuitive emotional responses, is perhaps associated with faster responses 

towards dilemmas. Thus, the influence from the MPFC to PI might be the indicator of the request 

for reflection and deliberation on intuitive emotional responses from selfhood and might slow 

down the overall decision-making process. This significant correlation was found only under the 

moral-personal condition. Likewise, our general discussion about the different Granger causality 

patterns between two conditions, also suggests that self-evaluative processes were not required to 

influence affective processes under the moral-impersonal condition, because dilemmas in this 

condition did not significantly provoke subjects’ negative emotional responses [25,26]. This 

result is in line with a previous study that has demonstrated positive correlation between the 

degree of the involvement of moral deliberation and mean response time particularly when 
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subjects were requested to solve highly conflicting moral problems, which are similar to moral-

personal dilemmas [144]. 

4.4 Limitations and Future Directions 

There are several limitations in the present study. First, the present study utilized 

hypothetical dilemmas instead of real life situations [145]. Due to this reason, the present study 

would not be able to explain the actual psychological processes linked to moral dilemma solving 

and moral behavior in one’s everyday life. Previous non-fMRI studies of moral judgment have 

also been criticized for this reason. For instance, there have been continuous controversies 

regarding the gap between the moral judgment score calculated using hypothetical dilemmas and 

actual moral behavioral outcome [6,146]. In short, because the hypothetical dilemmas are 

basically conceptual, abstract and philosophical, and cannot completely depict situations in our 

real lives, they would not be appropriate to measure subjects’ moral motivation in the real world. 

Second, the present study did not use any survey or questionnaire measuring the strength of each 

subject’s moral identity or moral self. Thus, it would be difficult to directly associate the brain 

activity in moral task conditions and moral self solely based on the findings from the present 

study. Future studies using such measurements (e.g., moral identity development interview [14], 

self-importance of morality measure [18]) should be conducted in order to clearly identify the 

neural-level mechanism of moral self. Third, the relatively small sample size (N = 16) and 

number of trials (60 per subject) provided only modest statistical power because of the relatively 

subtle difference in neural activity between socio-moral task conditions [147]. Because, the 

present study controlled for demographic variables (i.e., ethnicity, age, gender, ethnicity) by 

setting them as covariates, the lack of subjects would contribute to the further decrease of 

statistical power. This potentially insufficient statistical power can result in Type II errors that 
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hinder detection of any subtle but true neural-level activity of interest [148]. Fourth, because the 

present study investigated multi-cultural subjects, variances originating from the cultural factor 

would matter. When we tested the effect of the cultural background, we were not able to discover 

any brain region showed the significant cultural effect at the threshold of p < .05 (FDR) and k ≥ 

25. Also, the main effect of gender was not statistically significant. These results may imply that 

the moderating role of selfhood in moral decision making processes is universal across cultures 

and genders; however, due to the lack of statistical power of the present study, the validity of this 

interpretation would be limited. Fifth, emotional impacts originating from moral dilemmas 

would influence the subjects’ decision-making process, but the degree of emotional arousal was 

not measured. Negative emotional arousal would be stronger in the moral-personal condition and 

influence the decision making [25,26,51], but future experiments should collect emotional data 

to test this prediction. Sixth, although the results showed that regions associated with self-related 

processes were significantly involved in moral functioning, it is impossible to unequivocally 

conclude that moral self is the only self-related process activated under the moral task conditions 

in the present experiment. Instead, there might be many other self-related processes, which are 

not directly associated with morality or moral functioning, involved in the dilemma solving and 

it can be revealed by the neural activity in the default mode network. 

Thus, future studies should carefully consider several points to address these limitations. 

First, the development of more realistic moral dilemmas is a possible way to address the first 

limitation. Although the environment in MR scanners makes it difficult to employ truly 

naturalistic experimental stimuli, several scholars have suggested text-based materials using real-

life socio-moral stories [149,150] and attempted to apply them to an fMRI experiment [151]; 

however, the experiment did not examine the involvement of self-related processes or CMS 
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regions. Future fMRI experiments would utilize the realistic moral dilemma set and investigate 

the interaction and causal relation between CMS and other moral-related regions to demonstrate 

the neural-level mechanism of moral self in everyday lives. Second, the statistical power can be 

increased by replicating the experiment and interaction and causality analyses in future fMRI 

studies, to the extent finances permit. Finally, future studies should design more sophisticated 

experiments to illuminate the neural correlates of moral self that can be distinguished from other 

general self-related processes at the neural level. The studies may be able to develop dilemmas or 

task conditions that are involved in moral self-related problems (e.g., reflecting upon one’s moral 

beliefs) and general self-related problems (e.g., recalling previous personal experience from 

autobiographical memory) and to compare brain and network activity between these two 

conditions. 

 

5. Conclusion 

The present study demonstrates significant interactions developed between the CMS 

(PCC and MPFC) and other moral-related regions including AI and PI while subjects are solving 

moral dilemmas. These results can support the moral psychological accounts regarding the role 

of moral self in moral decision-making processes. Particularly, motivational processes for moral 

decision-making is coupled with activity in CMS regions, which is regarded as an indicator of 

the involvement of selfhood-related processes. The findings from the Granger causality propose 

that activity in CMS regions influence that in insula regions while moral decision-making. The 

causality between the indicated regions supports the influence of self-evaluation of beliefs and 

values based on self-referencing and autobiographical memory on the processing of moral 

emotion and generation of motivation for the final decision-making procedure (MPFC, PPC  
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PI, AI), although the influence in that direction were not dominant. This is consistent with the 

involvement of moral self and identity in moral judgment that has been proposed by moral 

psychologists who have attempted to better explain the source of moral motivation and actual 

moral behavior. Furthermore, the significant dominant influence from the AI to PI under the 

moral-personal condition is also interesting, because it shows us that the initially and intuitively 

aroused negative emotional responses are regulated by psychological processes associated with 

conscious and interoceptive awareness of emotions while solving complicated and conflicting 

moral dilemmas as moral psychologists have proposed. These findings from the interaction and 

Granger causality analyses in the present study can provide researchers in the field of moral 

psychology and social neuroscience with useful insights about how to approach the research 

topics regarding psychological processes and neural correlates of human morality. In particular, 

the present study demonstrates the importance of activity in the CMS associated with selfhood 

during the process of moral judgment to be accounted for in their future studies. 
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Tables 

Table 1 

Regions showed significant interaction with the PCC under the moral-personal condition 

(p < .05 FDR, k ≥ 25 voxels). PCC: Posterior Cingulate Cortex. 

Brain region BA 
MNI coordinates 

Voxels z score 
x y z 

Moral-Personal > Control, PCC - Positive 

Lingual Gyrus, Cuneus 

Cerebellum Posterior Lobe 
LR17, 18, 19 20 -102 4 11288 5.93 

Middle Frontal Gyrus 

Superior Frontal Gyrus 

Inferior Frontal Gyrus 

L6, 8, 9 -26 2 66 3154 5.39 

Inferior Parietal Lobule L7, 40 -38 -64 52 1591 4.18 

Medial Frontal Gyrus L8, 9 -12 30 42 588 4.10 

Midbrain, Brainstem L -8 -34 -4 383 4.94 

Angular Gyrus R40 50 -54 32 336 4.04 

Precuneus L7 -6 -70 48 187 3.66 

Middle Temporal Gyrus L21, 22 -58 -32 -2 173 3.83 

Middle Frontal Gyrus R10 36 54 -4 132 4.13 

Superior Frontal Gyrus L9 -20 52 36 127 3.76 

Caudate, Thalamus L -12 12 10 118 4.31 

Inferior Frontal Gyrus L47 -28 24 -6 109 3.70 

Brainstem L -4 -38 -38 83 4.27 

Cerebellum Anterior Lobe LR 4 -52 -32 82 4.84 

Caudate R 10 12 6 61 3.84 

Inferior Frontal Gyrus L10 -44 46 6 57 4.16 

Medial Frontal Gyrus L9 -10 48 22 55 3.45 

Inferior Frontal Gyrus R47 56 22 4 40 4.15 

Midbrain LR 4 -18 -18 34 3.28 

Inferior Frontal Gyrus R45 60 24 12 32 4.84 

Superior Temporal Gyrus L22 -46 -58 14 30 3.40 

Superior Frontal Gyrus L10 -24 62 -6 26 4.37 

Moral-Personal > Control, PCC - Negative 

Superior Temporal Gyrus, Insula R13, 22 40 -2 -18 502 -4.07 

Superior Temporal Gyrus, Insula L13, 22 -44 -4 -10 484 -4.48 

Postcentral Gyrus 

Precentral Gyrus 
R3, 4 44 -26 64 410 -4.81 

Medial Frontal Gyrus LR6 4 -18 66 96 -3.99 
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Precentral Gyrus L4 46 -14 44 78 -3.56 

Paracentral Lobule R31 4 -30 44 41 -3.32 

Cingulate Gyrus L32 -6 50 2 36 -3.69 

Superior Occipital Gyrus L19 -38 -84 32 35 -3.59 
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Table 2 

Regions showed significant interaction with the MPFC under the moral-personal 

condition (p < .05 FDR, k ≥ 25 voxels). MPFC: Medial Prefrontal Cortex. 

Brain region BA 
MNI coordinates 

Voxels z score 
x y z 

Moral-Personal > Control, MPFC - Positive 

Cerebellum, Inferior Frontal Gyrus 

Lingual Gyrus, Middle Frontal 

Gyrus 

Midbrain, Cuneus, Thalamus 

LR9, 17, 18 -4 -32 -4 12944 5.73 

Superior Frontal Gyrus 

Medial Frontal Gyrus 
LR6, 8 -4 12 64 1071 4.58 

Inferior Parietal Lobule 

Superior Parietal Lobule 
L7, 40 -34 -58 50 936 4.99 

Middle Frontal Gyrus R9 54 30 30 394 4.59 

Middle Temporal Gyrus L21, 22 -58 -38 0 200 4.14 

Inferior Frontal Gyrus R38, 47 48 20 -26 180 4.70 

Middle Temporal Gyrus L21 -50 14 -32 156 4.56 

Angular Gyrus R7 34 -62 50 77 4.24 

Caudate R 14 4 20 65 4.19 

Superior Temporal Gyrus L22 -56 -60 16 46 3.99 

Thalamus R 24 -28 -2 41 4.20 

Middle Frontal Gyrus R10 40 58 10 39 5.07 

Superior Frontal Gyrus L9 -18 52 34 37 4.07 

Precuneus R7 8 -66 52 36 4.29 

Lentiform Nucleus R 12 -2 4 35 3.99 

Cerebellum Anterior Lobe LR 2 -52 -38 30 3.96 

Middle Frontal Gyrus L10 -36 60 8 26 4.16 

Moral-Personal > Control, MPFC - Negative 

Insula R13 38 -14 14 2077 -4.46 

Cingulate Gyrus 

Medial Frontal Gyrus 
R6, 24 8 -24 44 1253 -4.32 

Postcentral Gyrus R4 22 -30 68 143 -3.63 

Insula L13 -44 2 -10 133 -4.09 

Cingulate Gyrus L32 -8 30 -12 95 -3.76 

Precentral Gyrus R4 46 -12 48 88 -3.41 

Postcentral Gyrus R3, 4 46 -22 62 70 -4.24 

Cingulate Gyrus L10, 32 -4 48 -4 33 -3.53 
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Table 3 

Regions showed significant interaction with the PCC under the moral-impersonal 

condition (p < .05 FDR, k ≥ 25 voxels) 

Brain region BA 
MNI coordinates 

Voxels z score 
x y z 

Moral-Impersonal > Control, PCC - Positive 

Cerebellum, Lingual Gyrus 

Cuneus, Middle Occipital Gyrus 
LR17, 18 20 -100 4 3868 4.83 

Middle Frontal Gyrus L6, 9 -44 -8 58 835 3.96 

Superior Frontal Gyrus L8 -16 28 58 761 5.44 

Inferior Frontal Gyrus L47 -32 20 -8 330 5.08 

Brainstem, Midbrain L -12 -16 -12 182 4.27 

Midbrain, Brainstem, Thalamus L -8 -34 -4 134 4.03 

Middle Temporal Gyrus L21 -54 6 -34 54 4.26 

Lentiform Nucleus R 16 -4 -2 38 4.10 

Angular Gyrus L40 -52 -62 38 37 3.59 

Inferior Frontal Gyrus R47 42 24 -20 35 3.85 

Superior Temporal Gyrus L38 -38 16 -26 32 3.77 

Middle Frontal Gyrus R9 46 32 38 30 3.76 

Pons, Brainstem LR -2 -36 -32 27 3.50 

Moral-Impersonal > Control, PCC - Negative 

Postcentral Gyrus 

Inferior Parietal Lobule 
R2,3, 40 62 -24 38 211 -4.41 

Cingulate Gyrus R24, 31 12 -30 40 185 -4.36 

Cingulate Cortex LR24, 25 0 20 -2 158 -3.91 

Superior Temporal Gyrus L6, 22 -56 -4 6 115 -3.96 

Paracentral Lobule L5, 31 -6 -32 48 93 -4.02 

Hippocampus R 34 -10 -14 66 -4.39 

Insula L13 -42 -18 6 34 -3.96 

Insula L13 -38 2 8 31 -3.64 
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Table 4 

 Regions showed significant interaction with the MPFC under the moral-impersonal 

condition (p < .05 FDR, k ≥ 25 voxels) 

Brain region BA 
MNI coordinates 

Voxels z score 
x y z 

Moral-Impersonal > Control, MPFC - Positive 

Cerebellum LR -12 -72 -22 726 4.68 

Insula, Inferior Frontal Gyrus 

Lentiform Nucleus, Putamen 
L13, 47 -28 18 -6 418 4.43 

Cuneus, Inferior Occipital Gyrus L18, 19 -38 -86 -12 402 3.82 

Superior Frontal Gyrus L6, 8 -12 16 54 267 4.05 

Cerebellum, Pons, Brainstem LR -8 -46 -30 243 3.80 

Inferior Frontal Gyrus L44, 45 -46 20 8 237 3.90 

Caudate, Thalamus L -24 -4 20 234 4.02 

Inferior Frontal Gyrus, Putamen 

Insula 
R13, 47 28 18 -2 181 4.88 

Precuneus L7 -16 -56 42 136 3.91 

Midbrain, Brainstem L -10 -16 -12 107 4.07 

Cuneus R18 10 -100 0 80 3.52 

Midbrain, Brainstem L -6 -32 -10 71 3.70 

Middle Frontal Gyrus L6 -30 -12 48 70 3.63 

Lingual Gyrus L19 -26 -66 -2 67 3.91 

Middle Temporal Gyrus L21 -54 6 -34 57 4.08 

Lentiform Nucleus R13, 47 12 -2 -2 32 3.91 

Moral-Impersonal > Control, MPFC - Negative 

Insula R13 42 -6 -4 209 -3.61 

Cingulate Gyrus R5, 31 14 -36 38 208 -4.00 

Insula L13 -46 -14 8 170 -4.15 

Insula L13 -40 4 -4 57 -4.20 
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Table 5 

 Comparisons between the PPI between two conditions (p < .05 FDR, k ≥ 25 voxels) 

Brain region BA 
MNI coordinates 

Voxels z score 
x y z 

Moral-Personal > Moral-Impersonal - PCC 

Cerebellum  L -12 -78 -14 366 3.59 

Inferior Frontal Gyrus L9, 45, 46 -52 20 22 110 3.94 

Inferior Parietal Lobule L40 -50 -50 52 101 3.86 

Midbrain, Brainstem L -4 -32 -4 79 3.53 

Superior Frontal Gyrus LR8 0 28 54 49 3.20 

Medial Frontal Gyrus L9 0 36 36 38 3.31 

Inferior Frontal Gyrus L45 -56 18 4 35 3.39 

Cerebellum  L -32 -62 -32 27 3.28 

Moral-Impersonal > Moral-Personal - PCC 

Insula R13 38 -10 -2 40 -3.26 

Moral-Personal > Moral-Impersonal - MPFC 

Cerebellum  LR8 34 -44 -32 2830 5.07 

Superior Frontal Gyrus L6 -12 6 58 168 3.61 

Inferior Frontal Gyrus L44, 45 -56 16 6 160 3.51 

Inferior Frontal Gyrus L9 -50 12 26 157 3.53 

Midbrain, Brainstem L -4 -30 -4 113 3.81 

Inferior Frontal Gyrus L47 -48 44 -12 46 3.27 

Cingulate Gyrus L32 -6 14 44 26 3.44 

Moral-Impersonal > Moral-Personal - MPFC 

Insula R13 34 -18 22 45 -3.47 
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Figure Caption 

Figure 1. Experimental paradigm and sample dilemmas 

Figure 2. Whole-brain t-test results (p < .05 FDR, k ≥ 25 voxels) 

Figure 3. Seed regions for PPI and Granger causality analysis.  

Figure 4. PPI analysis results (p < .05 FDR, k ≥ 25 voxels) 

Figure 5. Granger causality analysis results (significant causal relations at p < .05 (Bonferroni 

corrected) were presented. Dominant influences were colored with red color)
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Supplementary Materials 

Tables 

No. Gender Age Nationality 

1 Male 27.89 Korean 

2 Male 31.84 American 

3 Female 26.77 Korean 

4 Female 33.91 Korean 

5 Male 28.13 Korean 

6 Male 30.62 Korean 

7 Female 26.42 Korean 

8 Male 28.90 American 

9 Female 31.74 American 

10 Female 31.27 Korean 

11 Female 28.98 American 

12 Male 21.35 Korean 

13 Male 30.99 American 

14 Female 24.08 American 

15 Male 27.60 American 

16 Female 26.96 American 

Table S1. Subject demographics 

 

Brain region BA 
MNI coordinates 

Voxels z score 
x y z 

Moral-Personal > Control 

Medial Frontal Gyrus 
Cingulate Cortex 
Caudate, Putamen 

LR9, 10, 32 -8 40 10 5507 5.36 

Cingulate Gyrus, Precuneus LR7, 23, 31 -2 -58 28 1006 4.57 

Cingulate Gyrus LR23, 24, 31 6 -24 44 433 4.54 

Cingulate Gyrus, Precuneus L5, 7, 13 -12 -32 38 283 4.57 

Middle Temporal Gyrus L19, 39 -54 -74 18 251 5.35 

Anterior Cingulate LR25, 34 -2 4 -16 163 4.61 

Middle Temporal Gyrus R19, 21, 39 56 -66 10 98 4.51 

Caudate, Putamen R 16 22 2 98 3.96 

Inferior Parietal Lobule L40 -68 -32 26 76 3.76 
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Insula L13, 47 -28 12 -10 57 4.51 

Superior Temporal Gyrus R22 68 -42 10 42 4.06 

Moral-Impersonal > Control 
Precuneus, Cingulate Gyrus LR5, 24, 31 2 -50 50 1035 4.48 

Precuneus, Cingulate Gyrus 
LR7, 23, 30, 
31 -4 -68 32 939 4.41 

Precentral Gyrus L3, 4, 6 -36 -22 50 338 4.79 

Superior Frontal Gyrus L8, 9, 10 -22 36 36 253 4.13 

Inferior Parietal Lobule R40 66 -38 22 216 4.09 

Inferior Parietal Lobule L22, 40 -62 -28 30 155 4.24 

Medial Frontal Gyrus LR10 -4 54 10 127 4.12 

Superior Frontal Gyrus R8, 9 24 32 38 116 4.12 

Parahippocampa Gyrus L37 -26 -44 -22 79 3.93 

Insula L13, 44 -42 0 8 68 4.77 

Cingulate Gyrus LR24, 32 0 30 28 56 3.81 

Middle Temporal Gyrus R19, 39 46 -72 18 47 3.72 

Middle Temporal Gyrus L39 -48 -72 14 35 3.80 

Superior Frontal Gyrus LR9, 10 4 62 30 29 3.81 

Moral-Personal > Moral-Impersonal 
Medial Frontal Gyrus L10 -8 54 12 47 4.70 

Moral-Impersonal > Moral-Personal 
Parietal Lobule R7 30 -56 36 85 5.42 

Table S2. Whole-brain t-test results (p < .05 FDR, k ≥ 25 voxels) 

To / From MPFC PCC PI AI 

MPFC - .036±.010 .019±.006 .042±.012 

PCC .044±.012 - .027±.007 .027±.009 

PI .033±.006 .035±.009 - .052±.010 

AI .033±.007 .032±.008 .024±.006 - 
Table S3. Granger causality analysis results under the moral-personal condition (significant relations at p 

< .05 (Bonferroni corrected) were colored with red color while dominant relations at p < .05 were 

bolded and underlined) 
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To / From MPFC PCC PI AI 

MPFC - .041±.011 .039±.010 .040±.010 

PCC .072±.021 - .053±.015 .031±.013 

PI .019±.006 .020±.006 - .044±.009 

AI .028±.009 .020±.005 .018±.006 - 
Table S4. Granger causality analysis results under the moral-Impersonal condition (significant relations 

at p < .05 (Bonferroni corrected) were colored with red color while dominant relations at p < .05 were 

bolded and underlined) 

 


